Technical mastery rating in sports by biomechanical movement indices

ˑ: 

Dr.Hab., Professor V.I. Zagrevskiy1, 2
Dr.Hab., Professor O.I. Zagrevskiy2
1Mogilev State A. Kuleshov University, Mogilev, Belarus
2National Research Tomsk State University, Tomsk

Individual technical mastery is fundamental for competitive success in the sport disciplines that imply specific routines being executed and scored. The study analyzes the ways to apply a set of biomechanical movement indices for the technical mastery rating purposes, with the Tkachev reverse hecht video captures taken for the case study and analyses. The biomechanical movement indices were quantified by the video material analyses with a special priority to the rotation element of the vaulting movement sequence.
The study data demonstrate that the counter-pace element in the Tkachev reverse hecht makes provisions for the required rotation impulse in the controlled over-bar aerial phase of the exercise. The counter-pace movement direction is opposite to rotation of the body mass center radius-vector in the contact phase, particularly in the throw phase. Since in the aerial phase the body rotation axis goes via the BMC and the kinematic moment of the biomechanical system versus the body mass center (-104 kgm2/s) is constant, the joint extension-flexion movements in the aerial phase help only vary the angular speeds of the body elements without any effect on the kinematic moment of the biomechanical system versus the body mass center. 

Keywords: competitive routine, technique, motor skill, biomechanical system, kinetic moment.

References

  1. Gaverdovskiy Y.K. Tekhnika gimnasticheskikh uprazhneniy. Populyarnoe posobie [Technique of gymnastic exercises. Popular manual]. Moscow: Terra-Sport publ., 2002, 512 p.
  2. Forsh P.A. Zadachi po teoreticheskoy mekhanike dlya khimikov. Ucheb. posobie [Problems in theoretical mechanics for chemists. Study guide]. Moscow: Lomonosov MSU publ., 2010, 144 p.
  3. Bezhentseva L.M. Underage female athletes motor abilities developing by aesthetic gymnastics toolkit. Teoriya i praktika fiz. kultury, 2017, no. 8, pp. 89–90.
  4. Lubysheva L.I., Zagrevskaya A.I. Kineziologicheskiy podkhod kak metodologiya sovremennoy sportivnoy nauki i praktiki [Kinesiological approach as methodology of modern sports science and practice]. Teoriya i praktika fizicheskoy kultury, 2015, no. 12, pp. 3–5.
  5. Sherin V.S., Zamyatin A.V., Sherina E.A., Kolyaskina T.Y. Mobilnoe prilozhenie kak faktor effektivnoy podgotovki cheloveka k vypolneniyu normativov kompleksa GTO [Mobile application tool to facilitate training for GTO Complex tests]. Teoriya i praktika fiz. kultury, 2017, no. 4, pp.  89–90.
  6. Shilko V.G., Shilko T.A., Potovskaya E.S., Krupitskaya O.N. Sredstva optimizatsii stressovykh sostoyaniy studentov, zanimayuschikhsya fizicheskoy kulturoy [Stress control practices reported by university students engaged in physical education]. Teoriya i praktika fiz. kultury, 2017, no. 6, pp. 83–88.
  7. Zagrevskaya A.I., Lubysheva L.I. Ontokineziologicheskiy podkhod kak metodologiya sportizatsii fizicheskogo vospitaniya v sisteme obrazovaniya [Ontokinesiological approach for sportization of physical education within national education system]. Teoriya i praktika fiz. kultury, 2017, no. 6, pp. 6–8.
  8. Zagrevskaya A.I., Sosunovskiy V.S. Olimpiyskoe obrazovanie studentov fizkulturnykh vuzov na osnove antropnykh obrazovatelnykh tekhnologiy [Olympic education at physical culture universities based on anthropic education technologies]. Teoriya i praktika fiz. kultury, 2017, no. 2, pp. 83–85. DOI: 2‑s2.0–85020887574
  9. Zagrevskiy O.I., Zagrevskiy V.I. Tekhnika «Bolshogo oborota nazad iz stoyki na rukakh v stoyku na rukakh na parallelnykh brusyakh» na etape formirovaniya umeniya i navyka [Technique of grand swing backward from handstand to handstand on parallel bars in skill acquiring phase]. Teoriya i praktika fiz. kultury, 2015, no. 7, pp. 23–25.
  10. Zagrevskiy V.I., Zagrevskiy O.I. Modelirovanie prostranstvennogo dvizheniya elementov biomekhanicheskoy sistemy s vrascheniem vokrug proizvolnoy osi [3 D model of biomechanical system elements rotation around arbitrary axis]. Teoriya i praktika fizicheskoy kultury, 2017, no. 6, pp. 83–85.